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Numerical study of eigenvector statistics for random banded matrices
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The statistics of eigenvector amplitudes near the band center in random-banded-matrix ensembles is studied
numerically. The nonlinears model provides a rigorous description of the statistics in these ensembles. We are
interested in the extension of the predictions of thes model approach to complex quantum systems. We study
the validity range of the perturbation theory beginning from the well-known formulas in random matrix theory.
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I. INTRODUCTION

Disordered quantum systems exhibit irregular fluctuatio
of eigenfunctions. These determine the fluctuations of
conductance through quantum dots and wires. They can
studied by looking at the statistics of the local amplitudes
the eigenfunctions@1–4#.

In the metallic regime, characterized by a conductan
the eigenfunctions spread uniformly throughout the wh
system. Their statistics are described by random-ma
theory ~RMT! @5#. RMT deals with ensembles of Hermitia
matrices, corresponding to physical operators, whose ma
elements are randomly distributed. In Dyson’s ensemble
random matrices the matrix elements are Gaussian dis
uted. These ensembles are mathematically well underst
and expressions for the statistical distribution functions
be derived exactly@1#.

Random-banded-matrix~RBM! ensembles@6# can be re-
garded as generalization of the Dyson’s ensembles in R
In the former, the matrix elements are still Gaussian dist
uted, but their variance decays outside a certain range f
the main diagonal. These matrix ensembles can be sa
model systems that are classically strongly chaotic but s
ject to quantum localization@7#. The kicked rotator is an
example for such systems@6#.

Due to localization@7#, the statistics of eigenfunctions i
RBM ensembles show deviations from RMT, depending
how much they differ from the Dyson’s ensembles. Here,
supersymmetrics model approach can be applied@8#. Par-
ticularly, in the weakly localized regime where the matric
are almost full, the deviations are small and can be trea
within the perturbation theory.

In this paper, we present numerical results for the eig
function statistics in RBM ensembles, and compare thes
the expressions obtained for thes model. We are particularly
interested in the extension of thes model approach to com
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plex quantum systems, which can be no longer labeled
classically chaotic, but are still known to follow the predi
tions of RMT in the metallic regime. A well-known exampl
is the Anderson model of localization@9#, for which we have
presented numerical results elsewhere@10,11#. A notable fea-
ture of those results is the apparent discrepancy with
analytical predictions of thes model in a certain paramete
regime. It was conjectured in Ref.@12# that these discrepan
cies are due to so-called ballistic effects. Since this con
ture was partly based on heuristic arguments, we believe
it is necessary to check thes model formulas using numeri
cal methods as well. Here the RBM ensembles provid
useful tool, since they have been shown to be equivalent—
a certain limit—with the nonlinears model in the one-
dimensional case@8#.

II. A SIMPLE RANDOM-BANDED-MATRIX MODEL

In this paper, we consider the simplest version of t
RBM ensembles@6#, where the matrix elementsHi j of the
Hamiltonians are taken randomly, ifu i 2 j u<B, whereB is
the bandwidth. Other matrix elements are zero. In the
semble of orthogonal matrices all the nonzero nondiago
matrix elements are chosen to be real and Gaussian dis
uted with variance 1 and mean 0, whereas in the ensemb
unitary matrices these elements additionally have equ
distributed imaginary parts. The diagonal elements in b
orthogonal and unitary ensembles are real and Gaussian
tributed with variance 2 and mean 0.

Physically, the RBM ensembles can be related to o
dimensional~1D! disordered systems with long-range ho
ping, or alternatively, to quasi-1D systems withB associated
to the number of transverse channels for electron propa
tion. The orthogonal ensemble describes systems, which
time-reversal symmetric, whereas in the unitary ensem
this symmetry is broken. They correspond to the Dyso
ensembles in RMT, ifB equals the rankN of the matrices.

The RBM ensembles can be reduced to the o
dimensional nonlinears model, if B@1 @8#. The main prop-
erties of spectra and eigenfunctions in RBM ensembles h
been shown to depend only on the scaling parametel
©2002 The American Physical Society04-1
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5B2/N @6,13#. The strength of localization of the eigenstat
can be tuned by adjustingl. For l!1 the states are highly
localized and forl@1 they are delocalized. Here, we a
mainly interested in the delocalized regime, where the p
turbation theory provides formulas that can be generalize
other disordered quantum systems@3#.

III. EIGENFUNCTION STATISTICS

Let Ea and ca5(ca
1 , . . . ,ca

N) be the eigenvalues an
eigenvectors of a Hamiltonian, belonging to an orthogona
unitary ensemble described above. In this paper, we loo
the statistics of the eigenvector amplitudes$Nuca

i u2; i
51, . . . ,N%, weighted by the dimensionN of the eigenvec-
tors. We define@14#

f ~ t !5
D

N (
a

(
i

d@ t2uca
i u2N#d~E2Ea!. ~1!

HereD is the mean level spacing andE is the energy. In the
delocalized regime, whereB is large and the predictions o
RMT are valid, f (t) is given by@1#

f RMT
(O) ~ t !5

1

A2pt
exp~2t/2!, ~2!

f RMT
(U) ~ t !5exp~2t !. ~3!

The superscriptsO and U refer to Dyson’s orthogonal an
unitary ensembles of random matrices. Equation~2! is usu-
ally referred to as the Porter-Thomas distribution@15#.

Small deviations from Eqs.~2! and~3! due to localization
can be written as perturbation expansions@3#

f (O)~ t !. f RMT
(O) ~ t !@11ad~326t1t2!/2#, ~4!

f (U)~ t !. f RMT
(U) ~ t !@11ad~224t1t2!#. ~5!

These expansions are valid for small amplitudest,ad
21/2.

They are parametrized by

ad5
D

2p (
q

1

Dq2
, ~6!

which is a sum over the eigenmodes of the diffusion pro
gator in the system.D is the diffusion constant.

As indicated,ad generally depends on the dimensiond of
the system. It also depends on the boundary conditions.
random banded Hamiltonians correspond to the quasi
case with open boundary conditions, wherea15X/6 @3#. The
parameterX5(2/b)L/j, whereb51 in the orthogonal en-
semble, andb52 in the unitary one.L is the length of the
quasi-one dimensional wire, andj is theb-dependent local-
ization length@3#.

A nonperturbative solution forf (t) in the nonlinears
model was given in Ref.@12#. The formulas in the orthogona
and unitary ensemble consist of rather long integral and
ferential expressions, parametrized byX @11#. For brevity,
these formulas are not repeated here. They are valid on
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the quasi-1D case, and cannot be generalized to highe
mensional systems in contrast to the perturbational exp
sions~4! and ~5! @12#.

IV. NUMERICAL RESULTS

We studied the ensembles of RBMs with rankN51000.
The distributions of eigenvector amplitudes are in go
agreement with Eqs.~4! and~5! for largeB, as can be seen in
Fig. 1. Here, we plot the functiond f (t)5 f (t)/ f RMT(t)21 to
see the deviations from RMT. ForB,70 or B2/N,5 the
agreement rapidly gets poorer, indicating that the first-or
perturbation theory no longer applies.

FIG. 1. Deviations off (t) from RMT for the~a! orthogonal and
~b! unitary RBMs of the order ofN51000~symbols!. The averages
are taken over the energy interval (20.1,0.1) and 1000 RBM real-
izations. The roughness of the curves show the degree of inaccu
due to the finite number of realizations. The solid lines show
first-order correction term in Eqs.~4! and ~5!, respectively. The
values ofa1 for different bandwidthsB have been fitted to get the
best agreement for smallt. The data have been multiplied by
constant for clarity~as indicated!.
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The values obtained for the parameterX in the orthogonal
and unitary ensembles for different values ofB are shown in
Fig. 2. Within the obtained accuracy the values are the s
in the orthogonal and unitary ensembles, and they are
versely proportional toB2 with proportionality constant of
1363619. This fact lets us extrapolate values ofX even for
small B.

The formulas from Ref.@12#, compared to our results, ar
shown in Fig. 3. We get a very good agreement for all
values ofB we have used. It is somewhat surprising that
theory applies even for rather smallB. For largeB, the agree-
ment is not much good for tails, i.e., for larget. This dis-
agreement may point towards a fallacy of the formulas
that regime. The tails are, of course, also numerically di
cult to compute, because they represent rarely occurring
amplitudes of weakly localized states.

V. CONCLUSIONS

We have analyzed the statistics of eigenvector amplitu
in the RBM ensembles and their deviations from RMT a
function of the bandwidthB. We found good agreement wit
the perturbational expressions, based on the nonlineas
model for largeB. Moreover, the exact formulas given i
Ref. @16# were evaluated numerically. Our motivation to d
this study came from the calculations for the Anders
model of localization@10,11#, where we did find discrepan
cies between the numerical results and thes model predic-
tions in a certain parameter range. As suggested in R
@12,17#, the short-scale electron dynamics may cause de
tions from thes model predictions. The standards model

FIG. 2. ParameterX5(2/b)L/j for RBMs in the orthogonal and
unitary ensembles. The error bars show the standard errors o
average over RBM realizations. The line indicates a linear fit to
data from both the universality classes.
.
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assumes that the electrons undergo diffusive motion. Ne
theless, under certain circumstances, ballistic effects that
important on smaller scales than the electric mean free p
may dominate the fluctuations in the Anderson model. T
fact that the RBM ensembles can be reduced to the o
dimensionals model, as again verified here, is a cons
quence of the fact that the RBM model describes diffus
systems, where the ballistic effects are absent.

Our numerical results were fitted by the expressions
rived in Ref.@16#, which are exact in the quasi-1D case, b
numerically somewhat difficult to use. It was again verifie
as already known@6,8#, that the localization lengthj is pro-
portional to the parameterl5B2/N. From Fig. 2 one can
deduce thatL/j'0.7bl21. Since we consider the extende
regime l*1, the obtained prefactor is different from th
analytical prediction, given in Ref.@7# where the localized
limit l!1 was considered. Moreover, we have conside
the localization lengthj for the Anderson model of localiza
tion, represented as the nonlinears model, and not the lo-
calization length of the RBM as in Ref.@7#.

Our result can have practical significance when evalua
the complicated analytical formulas based on the nonlineas
model in the regime where the perturbation theory no lon
applies. It is numerically easier to calculate the same qu
tities for the RBM.
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FIG. 3. Distribution of eigenvector amplitudesf (t) for the or-
thogonal and unitary RBM ensembles with different values of
bandwidthB ~symbols!. The lines show predictions of Ref.@12#.
The data have been multiplied in the unitary case by 104 for clarity.
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