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Numerical study of eigenvector statistics for random banded matrices
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The statistics of eigenvector amplitudes near the band center in random-banded-matrix ensembles is studied
numerically. The nonlineas- model provides a rigorous description of the statistics in these ensembles. We are
interested in the extension of the predictions of éhenodel approach to complex quantum systems. We study
the validity range of the perturbation theory beginning from the well-known formulas in random matrix theory.
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[. INTRODUCTION plex quantum systems, which can be no longer labeled as
classically chaotic, but are still known to follow the predic-

Disordered quantum systems exhibit irregular fluctuationgions of RMT in the metallic regime. A well-known example
of eigenfunctions. These determine the fluctuations of thds the Anderson model of localizatigf], for which we have
conductance through quantum dots and wires. They can Heesented numerical results elsewhi@i@,11). A notable fea-
studied by looking at the statistics of the local amplitudes ofure of those results is the apparent discrepancy with the
the eigenfunction§l—4. anQIW|caI predlct|o_ns of the_r model in a certain p_arameter

In the metallic regime, characterized by a conductancef€dime. It was conjectured in RdfL2] that these discrepan-
the eigenfunctions spread uniformly throughout the wholecies are due to so-called ball!st[c effects. Since th|s_conjec-
system. Their statistics are described by random-matrifure was partly based on heuristic arguments, we believe that
theory (RMT) [5]. RMT deals with ensembles of Hermitian it iS necessary to check the model formulas using numeri-
matrices, corresponding to physical operators, whose matrigl methods as well. Here the RBM ensembles provide a
elements are randomly distributed. In Dyson’s ensembles d#seful tool, since they have been shown to be equivalent—in
random matrices the matrix elements are Gaussian distrit certain limit—with the nonlinear model in the one-
uted. These ensembles are mathematically well understooflimensional casg8].
and expressions for the statistical distribution functions can
be derived exactly1].

Random-banded-matrig]RBM) ensemble$6] can be re-
garded as generalization of the Dyson’s ensembles in RMT. In this paper, we consider the simplest version of the
In the former, the matrix elements are still Gaussian distribRBM ensembleg6], where the matrix elements;; of the
uted, but their variance decays outside a certain range frotHamiltonians are taken randomly, [if—j|<B, whereB is
the main diagonal. These matrix ensembles can be said the bandwidth. Other matrix elements are zero. In the en-
model systems that are classically strongly chaotic but sulbsemble of orthogonal matrices all the nonzero nondiagonal
ject to quantum localizatiof7]. The kicked rotator is an matrix elements are chosen to be real and Gaussian distrib-
example for such systen§]. uted with variance 1 and mean 0, whereas in the ensemble of

Due to localizatior[7], the statistics of eigenfunctions in unitary matrices these elements additionally have equally
RBM ensembles show deviations from RMT, depending ordistributed imaginary parts. The diagonal elements in both
how much they differ from the Dyson’s ensembles. Here, theorthogonal and unitary ensembles are real and Gaussian dis-
supersymmetrier model approach can be appli€8l]. Par- tributed with variance 2 and mean 0.
ticularly, in the weakly localized regime where the matrices Physically, the RBM ensembles can be related to one-
are almost full, the deviations are small and can be treatedimensional(1D) disordered systems with long-range hop-
within the perturbation theory. ping, or alternatively, to quasi-1D systems wilassociated

In this paper, we present numerical results for the eigento the number of transverse channels for electron propaga-
function statistics in RBM ensembles, and compare these ttion. The orthogonal ensemble describes systems, which are
the expressions obtained for themodel. We are particularly time-reversal symmetric, whereas in the unitary ensemble
interested in the extension of tkemodel approach to com- this symmetry is broken. They correspond to the Dyson’s

ensembles in RMT, iB equals the raniN of the matrices.
The RBM ensembles can be reduced to the one-

Il. A SIMPLE RANDOM-BANDED-MATRIX MODEL
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=B?/N [6,13]. The strength of localization of the eigenstates 0.8 — T T T T T .
can be tuned by adjusting. For A<1 the states are highly o au Preaats, 7
localized and forA>1 they are delocalized. Here, we are 06 N

mainly interested in the delocalized regime, where the per-
turbation theory provides formulas that can be generalized to
other disordered quantum systef33. 0.2

6£(t)

IIl. EIGENFUNCTION STATISTICS

Let E, and ¢,= (4%, ... 4Y) be the eigenvalues and 02

eigenvectors of a Hamiltonian, belonging to an orthogonal or e---< B=120 4
unitary ensemble described above. In this paper, we look at -0.4 —  =---= B=100 (x4) —
the statistics of the eigenvector amplitudésl|y! |?; i - -~ B=80 (x6) 1
=1,... N}, weighted by the dimensioN of the eigenvec- -0.6 —  +---= B=70 (x8) I
tors. We defindg 14] i | | | ‘ 7
-0.8 1 1 1 1
A -4 -3 -2 -1 0 1
(=52 2 At-[Y’NISE-E). (@) logyo¢
) _ _ 1.0
Here A is the mean level spacing aiitlis the energy. In the
delocalized regime, wherB is large and the predictions of 0.8
RMT are valid,f(t) is given by[1]
0.6
fO_(t)= ! exp( —t/2) 2 0.4
RMT ,_ZﬂTt ’ S .
y = 02F
fiar(t =exp(—1). (3)
0.0
The superscript®© and U refer to Dyson’s orthogonal and
unitary ensembles of random matrices. Equatnis usu- -0.2 - ::: gjﬁg x4 -
ally referred to as the Porter-Thomas distributjds). C e B;80 x6) 1
Small deviations from Eqg2) and(3) due to localization 04 = B70 x8) N
can be written as perturbation expansi¢8k 0.6 i . ‘ . 1
-2 -1 0 1
fO)=f Q) (t)[1+ay(3—6t+1t2)/2], (4) logyq ¢
fO)=fQ(H)[1+ag(2—4t+1t2)]. (5) FIG. 1. Deviations of (t) from RMT for the(a) orthogonal and

(b) unitary RBMs of the order ol=1000(symbols. The averages

v2, are taken over the energy intervat (0.1,0.1) and 1000 RBM real-

These expansions are valid for small amplitudesay

They are parametrized by izations. The roughness of the curves show the degree of inaccuracy
due to the finite number of realizations. The solid lines show the
A 1 first-order correction term in Eq€4) and (5), respectively. The

(6) values ofa; for different bandwidthd8 have been fitted to get the
best agreement for small The data have been multiplied by a

which is a sum over the eigenmodes of the diffusion propaponSta“nt for clarityas indicated

gator in the systenD is the diffusion constant. ) ) ) )
As indicateday generally depends on the dimensibiof the qya5|-1D case, and cannot be generahzed_to higher di-

the system. It also depends on the boundary conditions. TH@ensmnaI systems in contrast to the perturbational expres-

random banded Hamiltonians correspond to the quasi-11510ns(4) and(5) [12].

case with open boundary conditions, whage= X/6 [3]. The

2 % o

parametetX=(2/B)L/¢, where 3=1 in the orthogonal en- IV. NUMERICAL RESULTS

semble, ang3=2 in the unitary onel is the length of the

quasi-one dimensional wire, argdis the 8-dependent local- We studied the ensembles of RBMs with raNk= 1000.
ization length[3]. The distributions of eigenvector amplitudes are in good

A nonperturbative solution fof (t) in the nonlinearo agreement with Eqg4) and(5) for largeB, as can be seen in
model was given in Ref12]. The formulas in the orthogonal Fig. 1. Here, we plot the functio#f (t) = f(t)/fgut(t) — 1 to
and unitary ensemble consist of rather long integral and difsee the deviations from RMT. F@<70 or B¥/N<5 the
ferential expressions, parametrized ¥y[11]. For brevity, agreement rapidly gets poorer, indicating that the first-order
these formulas are not repeated here. They are valid only iperturbation theory no longer applies.
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FIG. 2. ParameteX=(2/B)L/& for RBMs in the orthogonal and B0

unitary ensembles. The error bars show the standard errors of the FIG. 3. Distribution of eigenvector amplitudé¢t) for the or-
average over RBM realizations. The line indicates a linear fit to thqhogona| and unitary RBM ensembles with different values of the
data from both the universality classes. bandwidthB (symbol3. The lines show predictions of Ref12].
The data have been multiplied in the unitary case byfaOclarity.
The values obtained for the parameXein the orthogonal

and unitary ensembles for different valuesBoéire shown in  assumes that the electrons undergo diffusive motion. Never-
Fig. 2. Within the obtained accuracy the values are the samtheless, under certain circumstances, ballistic effects that are
in the orthogonal and unitary ensembles, and they are inimportant on smaller scales than the electric mean free path
versely proportional td? with proportionality constant of may dominate the fluctuations in the Anderson model. The
1363+ 19. This fact lets us extrapolate valuesXokven for  fact that the RBM ensembles can be reduced to the one-
small B. dimensionalec model, as again verified here, is a conse-
The formulas from Ref[12], compared to our results, are quence of the fact that the RBM model describes diffusive
shown in Fig. 3. We get a very good agreement for all thesystems, where the ballistic effects are absent.
values ofB we have used. It is somewhat surprising that the Our numerical results were fitted by the expressions de-
theory applies even for rather smBll For largeB, the agree- rived in Ref.[16], which are exact in the quasi-1D case, but
ment is not much good for tails, i.e., for largeThis dis- numerically somewhat difficult to use. It was again verified,
agreement may point towards a fallacy of the formulas inas already knowii6,8], that the localization lengt§ is pro-
that regime. The tails are, of course, also numerically diffi-portional to the parametex=B?/N. From Fig. 2 one can
cult to compute, because they represent rarely occurring higtieduce that./£~0.78\ 1. Since we consider the extended
amplitudes of weakly localized states. regime A=1, the obtained prefactor is different from the
analytical prediction, given in Ref7] where the localized
limit A<1 was considered. Moreover, we have considered

o ) ) the localization lengtl¥ for the Anderson model of localiza-
We have analyzed the statistics of eigenvector amplltudeﬁon, represented as the nonlinearmodel, and not the lo-
in the RBM ensembles and their deviations from RMT as a.3)ization length of the RBM as in Refi7].

function of the bandwidttB. We found good agreement with oy result can have practical significance when evaluating

the perturbational expressions, based on the nonlieear the complicated analytical formulas based on the nonlinear

model for largeB. Moreover, the exact formulas given in mogel in the regime where the perturbation theory no longer
Ref.[16] were evaluated numerically. Our motivation to do gpplies. It is numerically easier to calculate the same quan-
this study came from the calculations for the Andersonties for the RBM.

model of localization[10,11], where we did find discrepan-
cies between the numerical results and éhenodel predic-
tions in a certain parameter range. As suggested in Refs.
[12,17), the short-scale electron dynamics may cause devia- We thank Bernhard Mehlig for useful discussions. This
tions from theo model predictions. The standacd model  work was supported by the DFG as a part of SFB393.

V. CONCLUSIONS
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